Quantitative and compositional changes in high density lipoprotein subclasses in patients with various genotypes of cholesteryl ester transfer protein deficiency.
نویسندگان
چکیده
High density lipoprotein (HDL) with and without apolipoprotein (apo) E was quantified and characterized in subjects with three genotypes of cholesteryl ester transfer protein (CETP) deficiency: the nonsense mutation in intron 14 (10 homozygotes and 5 heterozygotes); the missense mutation in the exon 15 (3 homozygotes and 9 heterozygotes); and the Int14A/D442G in 6 compound heterozygotes. ApoE-poor and apoE-rich HDL-cholesterol levels were elevated significantly in all genotypic groups with the decrease in CETP activity, indicating that both types of HDL-cholesterol can be a substrate for CETP. However, an unchanged or only slightly increased serum apoA-II level in each genotype indicated that the HDL particles with apoA-II are relatively resistant to CETP-mediated lipid transfer. Serum apoE-rich HDL level was considerably higher in the Int14A homozygotes than in the compound heterozygotes, in spite of similar apoE-poor HDL-cholesterol levels, which may indicate that apoE-rich HDL is a better substrate for CETP than apoE-poor HDL. Although the apoE-rich and apoE-poor HDL subclasses were similar in the accumulation of cholesteryl ester and depletion of triglyceride, the accumulation of free cholesterol was unique to apoE-rich HDL, indicating inhibited cholesterol esterification on this lipoprotein. Clinical laboratories should be aware of the discrepancy in HDL-cholesterol measurements that comes from the different recoveries of apoE-rich HDL using commercial reagents. In conclusion, CETP deficiency causes considerable quantitative and compositional changes in HDL subclasses, reflecting a significant physiological role for CETP in HDL metabolism.
منابع مشابه
I405V and -629C/A Polymorphisms of the Cholesteryl Ester Transfer Protein Gene in Patients with Coronary Artery Disease
Background: Cholesteryl ester transfer protein (CETP) plays a main role in high-density lipoprotein metabolism. CETP gene possesses several single nucleotide polymorphisms which have been associated with plasma high-density lipoprotein cholesterol (HDL-C) concentrations. The aim of this study was to determine the association of CETP -629C/A and I405V polymorphisms with coronary artery disease (...
متن کاملKiwifruit effect on adipose tissue cell size and cholesteryl ester transfer protein gene expression in high-fat diet fed Golden Syrian hamsters
Objective: The effects of kiwifruit on the histology and cell size of adipose tissue in hyperlipidemic models have not yet been reported. Therefore, this study aimed to investigate the effect of kiwifruit on the adipose tissue cell size and activity as well as the gene expression of cholesteryl ester transfer protein (CETP) in high-fat diet (HFD...
متن کاملتأثیر پلیمرفیسم I405V ژن CETP بر پاسخ لیپیدی به تغییر ترکیب اسیدهای چرب رژیم غذایی
Background and objectives: Atherosclerosis results from a complex interaction between genetic and environmental factors. Free cholesterol efflux from peripheral tissues and transferring to the liver for excretion from bile which is known as reverse cholesterol transfer (RCT) plays a central role in protection against atherosclerosis. HDL and cholesteryl ester transfer protein (CETP) are the maj...
متن کاملFamilial cholesteryl ester transfer protein deficiency is associated with triglyceride-rich low density lipoproteins containing cholesteryl esters of probable intracellular origin.
The net transfer of core lipids between lipoproteins is facilitated by cholesteryl ester transfer protein (CETP). We have recently documented CETP deficiency in a family with hyperalphalipoproteinemia, due to a CETP gene splicing defect. The purpose of the present study was to characterize the plasma lipoproteins within the low density lipoprotein (LDL) density range and also the cholesteryl es...
متن کاملAssociation of the CETP TaqIB Polymorphism with Coronary Artery Disease in Type 2 Diabetic Patients
Abstract Background and Objective: Diabetes mellitus is the most common risk factor for coronary artery disease (CAD). Cholesteryl ester transfer protein (CETP) TaqIB polymorphism is associated with changes in lipid profile and may be a risk factor for CAD in patients with diabetes. This study aimed to evaluate the association of CETP TaqIB polymorphism with CAD in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of lipid research
دوره 38 6 شماره
صفحات -
تاریخ انتشار 1997